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Abstract This study describes teacher learning in a teaching experiment consisting of a

content-focused methods course involving the mathematical knowledge for teaching

function. Prospective and practicing teachers in the course showed growth in their ability to

define function, to provide examples of functions and link them to the definition, in the

connections they could make between function representations, and to consider the role of

definition in mathematics and the K-12 classroom. Written assessments, interview data,

and class discourse analyses illustrate how the course supported the development of

mathematical knowledge that built on individual teachers’ prior knowledge as well as the

development of a stronger collective understanding of function.

Keywords Teacher knowledge � Teacher preparation � Professional development �
Mathematical knowledge for teaching � Functions

Introduction

High-quality mathematics teaching requires deep knowledge of mathematics content,

including knowing both how to solve problems and how to represent content in ways that

are useful for teaching. These two components of the larger body of mathematical
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knowledge for teaching (Ball et al. 2008)—common and specialized content knowledge—

rest on the premise that teachers are a special class of mathematics users and that what they

need to know in order to teach mathematics effectively goes beyond what is needed by

other professional users of mathematics. There is substantial evidence that differences in

mathematical knowledge for teaching are linked both to the quality of mathematics

instruction that teachers enact and the substance of student learning that results (Baumert

et al. 2010; Charalambous 2010; Hill et al. 2005; Tchoshanov 2011). There are few studies,

however, that explore the ways in which teacher education experiences might provide

opportunities for teachers to learn mathematical knowledge for teaching. In this study, we

describe changes in secondary mathematics teachers’ mathematical knowledge for

teaching function through their engagement in a mathematics methods course teaching

experiment.

Theoretical perspectives on the development of mathematical knowledge for teaching

Building on Shulman’s (1986) call to attend to the intersections between pedagogical and

subject-matter knowledge, Ball and colleagues describe six aspects of mathematical

knowledge for teaching (MKT), shown in Fig. 1. Subject-matter knowledge, on the left

side of the figure, is of particular interest in the context of secondary mathematics teachers

because it is presumed to occur through engagement in mathematics content courses that

serve diverse learners beyond teachers. It is likely that these courses serve to develop

common content knowledge (CCK), the ability to use mathematics to solve problems. This

knowledge is certainly prerequisite to being able to teach mathematics.

Beyond CCK, teachers also need to know how to represent mathematics content in ways

that support student learning of mathematical ideas. Studies have demonstrated the

importance of this specialized content knowledge1 (SCK) in teachers’ abilities to plan,

teach, and reflect on practice, such as anticipating student thinking (Carpenter et al. 1989),

identifying and addressing mathematical misconceptions or confusions (e.g., Stein et al.

1990), and making decisions while teaching (e.g., Sherin 2002). SCK is a measurably

distinct construct associated with improved student learning outcomes (Brown et al. 2006;

Hill et al. 2005; Thompson et al. 2006).

Opportunities for secondary teachers to develop their CCK and SCK related to school

mathematics are highly variable, both in the United States and internationally. Typical

secondary teacher education programs in the U.S. provide opportunities to learn common

content knowledge through tertiary mathematics coursework (Tatto et al. 2012), leaving

few opportunities for teachers to develop specialized content knowledge related to the

K-12 curriculum and still fewer opportunities to link the two. Ball et al. (2005) called

specifically for coursework designed to address SCK, but it is not clear how such

coursework might fit into contemporary models of teacher education. An international

survey of mathematics teacher preparation programs demonstrates that secondary methods

courses are rarely conceptualized as systematic opportunities to learn mathematics content;

rather, they focus on planning for and enacting mathematics instruction, fluency with

mathematics standards and curriculum, and the development more broadly of mathematical

thinking in students (Tatto et al. 2012). While specialized mathematics-for-teachers

courses have the potential to develop this knowledge (McCrory et al. 2009), few research-

based models exist for such courses in secondary mathematics teacher preparation (for

1 A third aspect of subject-matter knowledge, Knowledge of Mathematics at the Horizon or Horizon
Knowledge, was not clearly defined at the time of the study and was not explicitly included in our design.
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exceptions, see Hill 2006; Senk et al. 2000). There are few models for professional

development that feature a sustained focus on the development of mathematics content,

and particularly SCK, over time (see Driscoll 1999; Seago et al. 2004 as notable excep-

tions). Moreover, professional development for practicing teachers tends to be content-

general and episodic, despite the existence of content-focused resources (Banilower et al.

2013; Smith 2001). These conditions leave the field with few research-based insights into

the opportunities secondary teachers have to learn common and specialized content

knowledge related to the mathematics that they will teach to students.

One model integrating CCK and SCK into an existing methods course infrastructure is

what Markovitz and Smith (2008) term a content-focused methods course. Content-focused

methods courses systematically develop a slice of mathematical content within the context

of the typical activities in a methods course and are designed to enhance teachers’

mathematical knowledge for teaching (Markovitz and Smith 2008; Steele and Hillen

2012). Rather than dealing with mathematics content through isolated tasks, lesson plans,

or units, a single content focus spans all work in the course. Common and specialized

content knowledge are built in the same systematic ways in which methods courses build

teachers’ pedagogical knowledge over time.

A content-focused methods course can provide teachers with diverse opportunities to

learn mathematical knowledge for teaching. Specifically, we hypothesize that engaging

teachers in solving and discussing mathematical tasks from secondary mathematics and

then analyzing those tasks from the perspective of both a learner and a teacher support the

development of CCK and SCK. This hypothesis rests on three fundamental assumptions.

First, solving rich mathematical tasks provides opportunities for teachers to build CCK by

doing mathematics. Second, discussing different solution paths with other teachers pro-

vides opportunities to develop SCK, both through exposure to other mathematical methods

and the work of explaining approaches to one another. Third, considering the same task

from the perspective of a learner and a teacher (including the analysis of narrative and

written cases of the teaching of that mathematics) provides opportunities to connect

teachers’ common and specialized content knowledge (Steele 2008).

In the section that follows, we describe how we operationalized CCK and SCK related to the

content-focused methods course on algebra as the study of patterns and functions. We present a

Fig. 1 Aspects of mathematical knowledge for teaching (Ball et al. 2008)
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framework describing aspects of mathematical knowledge for teaching function that framed the

teaching experiment and use the framework to analyze teacher learning in the course.

Common and specialized content knowledge for teaching functions

Function is a rich site for studying teacher learning for two reasons. Over the past quarter

century, function has emerged as a unifying theme in United States mathematics curricula,

shifting away from reserving the concept for upper levels of secondary mathematics. Typi-

cally, the definition of function and a connection to graphing occur in the late middle grades

and formal study of function in high school, with an emphasis on symbolic and graphical

forms and building from simple linear functions to quadratic ones. Study of higher-order,

exponential, trigonometric, and parametric functions was historically reserved for upper-

division courses targeting college-bound students. This sequence can lead to compartmen-

talization and fracturing of the function concept (e.g., Vinner and Dreyfus 1989). These

challenges, coupled with the fact that the conceptual underpinnings of function are accessible

and teachable as early as the intermediate grades (Leinhardt and Steele 2005; Leinhardt et al.

1990), have shifted function’s place in school mathematics (NCTM 2000; CCSS 2010).

In a study of teachers’ opportunities to learn school mathematics in teacher preparation,

the Teacher Education Development Study—Mathematics found highly variable results

with respect to the topic of functions. Assessments of US secondary teacher candidates’

mathematics content knowledge showed that they performed at or below the mean (Tatto

et al. 2012). This suggests that secondary teachers might benefit from additional oppor-

tunities to learn the mathematical knowledge for teaching function. This conclusion begs

the question, what specific knowledge might benefit teachers in helping their students

develop a richer, more connected concept of function? In identifying aspects of common

and specialized content knowledge to include in a teacher learning experience, we draw

from studies of teachers’ knowledge-in-use related to the teaching of function.

Common content knowledge: defining and identifying functions

Function is an important foundational concept in part because it models a wide range of

important, predictable phenomena. As such, any user of mathematics would need to know

the features that distinguish functions from other relations. Along with this definitional

knowledge, mathematics users also need to be able to identify a situation as a function or

non-function. Studies of elementary and secondary teachers note that most can articulate a

fairly accurate definition for function. Teachers’ examples, prototypes, or images, how-

ever, encompass only a sub-class of functions most typical in secondary mathematics;

functions such as qualitative graphs, functions without a single closed-form rule, or dis-

continuous functions are less likely to be considered (Even 1990, 1993, 1998; Even and

Tirosh 1995; Norman 1992; Pitts 2003; Sanchez and Llinares 2003; Stein et al. 1990;

Wilson 1994). These results are consistent with Vinner and Dreyfus’s (1989) distinction

between a concept definition for function and the concept image that teachers might hold.

While a teacher’s concept definition may indeed reflect the defining features of a function,

a more limited concept image, such as one restricted to functions that can be expressed

with a formula and have a continuous graph, can lead to confusion in identifying functions

and non-functions. Simply put, being able to state a definition does not guarantee an

understanding of the important features of that definition.

The characteristics of univalence and arbitrariness distinguish functions from other

mathematical relations (Even 1990; Cooney et al. 2011). Univalence refers to the mapping
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of each element of the domain to exactly one element of the range. This characteristic

allows for one-to-one and many-to-one relationships, but excludes one-to-many relations.

Univalence is often evaluated graphically using the Vertical Line Test, which entails

visualizing or drawing a vertical line passing through the Cartesian graph of a function. If

the line touches the graph at no more than one point, the graph represents a functional

relationship. Arbitrariness specifies that elements of the domain and range need not be

numbers and that the rule relating them does not have to be described by a regular

expression. For example, a function could take as its domain a list of words and return as

its range the first vowel in the word. Another example of arbitrariness is a graph of distance

over time created by walking in front of a motion detector. Compared to univalence,

arbitrariness is less visible as a criterion in definitions of function. Definitions rarely

include explicit language related to arbitrary functions, but rather are written such that

arbitrariness is not excluded. As such, any mathematically valid definition of function must

include univalence and not exclude arbitrariness.

Specialized content knowledge: recognizing functions in a variety of forms

To foster a rich conceptual understanding of function with students, a teacher needs to

know more than simply the definition of function and the criteria by which one can identify

examples and non-examples. SCK represents a transition between learner and teacher, in

which a teacher mobilizes a deep knowledge of the content to make decisions about what

to teach and how to teach it. This knowledge begins with the definition of function, the first

of the essential understandings for teachers noted by Cooney et al. (2011). Any definition

that includes univalence and does not rule out arbitrariness can be considered a valid

definition of function, although such definitions are likely to use diverse language: map-

pings, inputs and outputs, relationships between sets, and so on. Teachers likely encounter

multiple function definitions—in textbooks, supplementary materials, and in understand-

ings their students bring to their classroom—and must determine whether these definitions

are valid and/or equivalent. Moreover, some definitions may be more pedagogically useful

than others. For example, a class working on functions as numerical tables might find a

definition focused on input and output to be useful, whereas a class exploring domains and

ranges of composite functions might benefit from a set-mapping definition.

Another important aspect of SCK is the ability to use multiple representations of

functions and to translate between them (Cooney et al. 2011). Functions can be represented

in a variety of ways—symbolic equations, tables, graphs, mappings, verbally, and by

contextual situations2 (Lesh et al. 1987; Goldin 2002). Secondary mathematics typically

privileges the symbolic form, with graphs seen as a less-precise application of the sym-

bolic, and context used largely to spark student interest (Knuth 2000). Heavy emphasis on

symbolic representations and easily graphed functions can lead to over-emphasis of con-

tinuous linear and quadratic functions and fewer explorations of more exotic functions

without a single closed-form rule (e.g., piecewise functions, set mappings, discrete data

sets) or whose graphs cannot be easily represented (e.g., the Dirichlet function,3 sin(1/x),

non-numeric functions). Different representations can help reveal important behaviors to

2 We use context following Lesh et al. (1987) and Van de Walle et al. (2009) to identify real-world narrative
function situations as a representation of functions.
3 The Dirichlet function takes as an input any number, and returns the same number if the input is a rational

number, or 0 if the input is not a rational number. Stated another way, f ðxÞ ¼ x if x 2 Q

0 if x 62 Q

�
.
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learners; for example, noticing scaling patterns in a table can reveal distinguishing features

of proportional and non-proportional functions (Lamon 2012). Analyzing rate of change

using the first derivative and considering relative rates of change in a graph can support

deeper understanding of the underlying context in a mathematical modeling situation. To

promote strong understandings of function in students, a teacher’s knowledge of function

would include fluency with a variety of representations and the ability to move flexibly

between them.

We used this body of research on the teaching of function and teachers’ knowledge-in-

action to identify important central themes to explore in the content-focused methods

course that is the focus of the study described herein. These themes are shown in Table 1

and organized into CCK and SCK categories. These themes should not be taken as

everything one might wish teachers to know about function, but rather a pivotal set of

concepts related to understanding function that have been shown to be particularly

problematic.

We envisioned the content-focused methods course as an opportunity to learn about

these aspects of function, but we did not presume that teachers would enter with no

knowledge related to function. We instead anticipated a diverse set of needs related to

teachers’ mathematical knowledge for teaching functions. Some teachers might have

misconceptions or confusions related to CCK, in particular with aspects of the definition or

mismatches between the definition and examples and non-examples of functions. Others

might move between representations of functions in ways common to the secondary

mathematics curriculum (e.g., equation to table to graph), but have less experience making

connections in other directions. In the sections that follow, we describe the design of the

content-focused methods course teaching experiment, describe the population, and draw on

course data to answer the research question: what subject-matter knowledge (CCK and

SCK) learning is evident from the work and talk of teachers in a content-focused methods

course related to functions (herein referred to as the functions course)?

Method

The functions course that is the focus of this study was a teaching experiment implemented

as a graduate course for prospective and practicing teachers at a large urban university in

the United States. The course was held in a six-week summer term, and met for 3 h twice a

week, and was intended to enhance teachers’ knowledge of function and to develop their

capacity for enacting meaningful student-centered lessons around function concepts. The

course was designed as an advanced mathematics methods course, in that it aimed peda-

gogically to develop teachers’ capacities to identify worthwhile mathematical tasks, plan

rich student-centered lessons, and analyze student work and student thinking. In planning

the course, mathematical tasks, narrative and video cases, and student work relating to

Table 1 Core aspects of teacher
knowledge of function

Common content knowledge Specialized content knowledge

State a definition of function Evaluate function definitions and
consider their utility for teaching

Create and classify examples
and non-examples of function

Be able to create and move flexibly
between representations of
functions
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function were integrated into the methods structure, and a set of mathematical learning

goals were developed alongside the pedagogical goals. Mathematically, the course aimed

to: (1) develop a mathematically accurate definition of function and use it to distinguish

examples and non-examples of function; (2) distinguish types of functions, such as linear/

nonlinear and proportional/non-proportional; (3) solve a variety of problems involving

functions, exploring a variety of terminology and notation; and (4) recognize the equiv-

alence of and be able to use in practice a variety of function representations. Figure 2

shows the activities included in the course, with different shapes used to denote different

types of activity.

The activity sequences shown in Fig. 2 begin with exploring mathematical tasks

(rectangles) as starting points to consider issues of teaching and learning mathematics

through subsequent activities such as analyzing cases of teaching and student work from

the same or a similar task. As such, both the mathematical and pedagogical experiences

that followed provided teachers with sites for building content knowledge. The course

modeled a type of teaching whose goal was for teachers to learn with understanding

(Carpenter and Lehrer 1999) and to connect their experiences as mathematical learners to

their work as mathematics teachers. The instructor (also the third author) kept public

discussions learner- and content-centered; all teacher contributions and ideas were wel-

comed, with selected (often controversial) ideas explicitly taken up by the instructor for

further discussion. These design features embodied the three fundamental assumptions

regarding the development of CCK and SCK: that solving rich mathematical tasks can

build CCK, discussing different solution paths can develop SCK, and investigating tasks

from the perspective of a learner and a teacher can foster connections between CCK and

SCK. The course viewed this knowledge-building as both individual and collective, visible

in teachers’ written work and talk.

Course design began with the identification of function-related mathematical tasks,

cases, and student work that represented a variety of types of functions and non-functions.

In drawing on existing narrative and video portrayals of practice, the course was anchored

by linear and quadratic relationships most common in secondary mathematics. The

research and design team worked to add additional tasks and student work samples from

this core and to design other activities that would afford consideration of a wider array of

Fig. 2 A course map representing the progression of activities in the course
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functions, non-functions, and representations. The research and design team, which

included the instructor, met weekly to assess teacher learning and make recommendations

regarding subsequent content. This allowed the team to make adjustments to the mathe-

matical storyline of the course and thoughtfully select mathematical tasks to push teachers’

thinking based on their performance in the course. As such, we take as data both the work

and talk produced by teachers and the selection and design of course activities, which were

responsive to emerging teacher thinking.

Participants

The 21 teachers in the course varied with respect to certification, subject-matter prepara-

tion, and experience. Thirteen were completing a requirement for elementary or secondary

certification and a Masters of Arts in Teaching degree (MAT); six were certified practicing

teachers enrolled as part of a Masters of Education program, and the remaining two

teachers were students in deaf education interested in mathematics. Sixteen teachers were

secondary-certified and had earned a bachelors degree in mathematics (or its equivalent),

with five elementary- or special education-certified teachers holding a bachelors degree in

a discipline other than mathematics.

Data sources

Data sources related to mathematical knowledge for teaching function were drawn from a

larger set of instruments designed to capture teacher learning from the course (including

learning related to the pedagogical goals). For this study, we identified written tasks and class

discussions with the potential to illuminate teacher learning of subject-matter knowledge

related to function. We examined the ways in which teachers solved mathematical tasks,

discussed different solution paths, and considered the tasks as learners and teachers, selecting

data sources that represented both individual and collective work and talk on tasks and the

teaching of those tasks. These sources included a pre- and post-course written assessment of

key mathematical and pedagogical ideas (during Classes 1 and 12, respectively); two

audiotaped interviews with each teacher—the first conducted near the beginning of the course

and the second after the last class session; video records of class meetings as well as field notes

and instructional artifacts for each meeting; and copies of teachers’ work. Data sources used

for this analysis are shown in Table 2; all tasks described can be found in the Appendix.

Videos of the class meetings and teacher interviews were transcribed and verified by the

research team. Teachers were given a course map similar to Fig. 2 to assist in describing

activities that contributed to their learning of mathematics in the post-course interview.

Data analysis

The data analysis followed a constant comparative method that balanced the individual

teacher and the collective with respect to learning. The research team moved between

individual results from written assessments and interviews and the class discourse and

artifacts constituting collective opportunities to learn. Data coding followed a two-stage

process, with the first stage focused on the work produced by individual teachers. We

characterized change in common and specialized content knowledge by analyzing written

and interview tasks relevant to the aspects of CCK and SCK in Table 1. Rubrics were

developed for written items, with change assessed using parametric and nonparametric
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tests of significance as appropriate. These items were coded by the first two authors with an

inter-rater reliability of at least 92 %. Teachers’ responses to interview questions related to their

mathematical knowledge for teaching function were also examined and coded thematically.

Four written assessment items and one interview question were included in the coding.

The first phase of analysis focused on CCK and SCK as demonstrated on the pre- and

post-course assessment. Assessment item 4 was used to measure teachers’ CCK related to

the definition and ability to identify examples and non-examples. Definitions were coded as

correct if they included the idea of univalence and not explicitly rule out arbitrariness.

Specifically, teachers’ definitions needed to include the idea that y is a function of x when

there is a relationship between x and y such that for every value of x there is one and only one

corresponding value of y. The terms x and y could be replaced by similar mathematical

terms such as input and output, domain and range, and independent variable and dependent

variable. Definitions that did not include the idea of univalence or made erroneous state-

ments (e.g., functions must be linear relationships) were coded as incorrect. Definitions

were coded as inconclusive if there was not enough information present to suggest that the

teacher included the univalence criterion. Such definitions included correct statements (e.g.,

functions pass the vertical line test) that provided no further explanation regarding why the

statements implied a relationship was or was not a function. To describe teachers’ ability to

classify examples and non-examples of functions, items 2 and 4 were used. In addition to

providing a definition, item 4 also asked teachers to provide an example and non-example of

a function; these examples were coded as correct, incorrect, or inconclusive and categorized

by mathematical representations used. Item 2 asked teachers to identify examples as

functions or non-functions; responses were coded as correct and incorrect.

Items 1 and 3 were used to measure teachers’ SCK related to creating and connecting

representations of functions. Responses to the items were coded using a rubric (see Table 3)

that captured the degree to which teachers made connections between representations of

functions, and specifically between the visual representation, their written representation of

the solution, and any other representations (most frequently tables and symbols) used in the

service of solving the task. No item directly measured teachers’ ability to evaluate function

definitions and their utility for teaching; however, several in-class conversations focused

explicitly on this topic and were analyzed to describe teacher learning.

The second phase of the analysis considered the talk in which teachers engaged while

solving tasks and discussing the teaching of those tasks. We considered talk a significant

data source because it represented teachers’ abilities to engage in the practices of solving

tasks, discussing solution paths, and analyzing tasks as a learner and a teacher, mirroring

the work we would anticipate teachers doing as a professional learning community in a

school. We identified class conversations to analyze in a two-step process. First, we used

responses to an interview item in which teachers were asked to identify activities that

contributed to their learning about mathematics. We noted discussions of activities that

were identified as sources of mathematical learning for at least seven of the twenty-one

teachers. Seven was selected as the threshold as it represented one-third of the course

population and guaranteed diversity across constituencies (elementary/secondary, pro-

spective/practicing) in the course. This process yielded eleven discussions in six class

meetings (Classes 2, 3, 5, 7, 8, and 11).4

4 Classes 1 and 12 consisted almost entirely of data collection or administrative work; thus, the six classes
identified as containing relevant activities represent over half of the course. Given that the course also had
goals and activities related to developing pedagogical knowledge, we feel this is a fair representation of the
extent to which content was a focus of the methods course.

MKT for function 461

123



After identifying these conversations, we performed a content analysis on the transcripts

to identify the most significant opportunities to learn the four aspects of CCK and SCK in

Table 1 (Babbie 2012). Using the descriptors to identify themes, we wrote analytical

memos for each identified conversation relative to any of the four aspects present and

identified excerpts that were characteristic of the conversation. We present the results of

our analysis of the assessment items, with descriptive detail and transcript excerpts from

the discussions, to describe changes in teachers’ CCK and SCK related to function.

Results

In this section, we consider the four aspects of function related to CCK and SCK and

describe changes in teacher knowledge, as evidenced by the work and talk as teachers

solved tasks, shared solutions, and discussed the teaching of tasks related to function. By

the close of the course, teachers had changed in the ways in which they defined function,

how they identified examples and non-examples of functions, the representations they

created and the connections between them, and their conceptions of the role of definition in

the teaching and learning of function. Looking across the twelve class meetings and

associated activities, over half of the talk in the course related to CCK and SCK of function

(rectangles/rhombi in Fig. 2).

Common content knowledge: defining function

Assessment item 4 asked teachers to provide a definition of function. Pre-test definitions

indicated that fewer than half of the twenty-one teachers provided a correct definition of

function, as shown in Table 4. On the post-test, twenty teachers provided a correct defi-

nition of function, a significant difference (Fisher’s exact test, p \ 0.001). All twelve

teachers who did not provide a correct definition on the pre-test improved in some way:

seven moved from incorrect to correct, four from inconclusive to correct, and one from

incorrect to inconclusive. There were also shifts in attention to the criterion of arbitrari-

ness: definitions that explicitly ruled out arbitrariness declined from seven on the pre-test to

zero on the post-test. There was a significant increase in the use of input and output in

teachers’ definitions5; on the pre-test, three teachers used these terms, whereas twelve used

them on the post-test (Fisher’s exact test, p \ 0.01).

Reflecting on their learning in the post-course interview, eleven teachers said they

learned something about the definition of function. Ten were secondary teachers, the

population one might consider most likely to already have robust knowledge related to

function, including all the practicing secondary teachers. These eleven were not just the

teachers whose written definitions changed: four moved from incorrect to correct on the

assessment, three from inconclusive to correct, and four produced a correct definition both

times. Carl, a prospective secondary teacher who moved from incorrect to correct,

described his learning about the definition of function:

I have a clearer definition of what a function is. I think most of us came into the class

having worked with functions before, obviously… but I don’t think a lot of us really

5 This is not particularly surprising, since these terms were used in the class-created definition that was
posted during the course and were frequently used by teachers to make sense of function. However, the fact
that there was not a complete convergence to this language, along with the diversity in the construction of
input–output definitions, suggests that teachers did not simply memorize the class definition.
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had a really SOLID DEFINITION in our heads of what a function is. And I think that

the class helped us revise our own inkling of what a function is… Before the course,

if someone had asked me, ‘‘What is a function?,’’ I would’ve said something about

the vertical line test. I would’ve said something about an equation, or function

notation. But I don’t think I could’ve really given a really direct answer. After the

course, I think I can.

Content analysis of talk

The work on definition of function was designed to do more than arrive at an accurate

definition. The discussions aimed to build a conceptual understanding of the meaning of

the term and the elements of the definition. The term function was publicly introduced by a

secondary teacher in Class 2, and explicit consideration of the definition (first constructing

a definition, then revisiting and refining the definition) took place in classes 3, 4, and 7.

Final proposals for definitions are shown in Fig. 3. It is notable that three of the items on

What is a function? 

1. specifies a relationship between 2 sets – domain and range 
2. output depends on the input (perimeter of polygons depends on the number of polygons) 
3. for each input there is a unique – EXACTLY ONE – output 
4. graph would pass the vertical line test 
5. some “things” that pass the vertical line test have the same output for 2 different inputs 

Fig. 3 The final co-constructed definition of function

Table 4 Teachers’ written defi-
nitions of function

* p \ 0.001

Pre-test (number
of teachers)

Post-test (number
of teachers)

Correct 9* 20*

Vague/inconclusive 4 1

Incorrect 8 0
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the list (items 3, 4, and 5) address the idea of univalence, while the remaining items (items

1 and 2) help specify the components in a functional relationship.

After the term function emerged in Class 2, the instructor flagged it and indicated that

they would return to that statement in the next class. In Class 3, teachers were first asked

whether they agreed with the claim that pattern task they solved represented a function

(a unanimous yes) and asked groups to answer, ‘‘What is a function?’’ During the public

discussion, several aspects of a definition were offered, critiqued by other teachers in the

class, discussed, and revised, with the instructor recording all comments. The discussion

ended when teachers did not have any further additions to or comments on the list. Perhaps

they thought they had accomplished the goal of defining function and were ready to move

on, much as a typical instructional progression might unfold. However, the instructor noted

that this was a work in progress.

Well, it’s actually quite a list of things that we’ve got here. What I’m going to do is,

produce that [on chart paper] and what we’ll try to do is revisit it and see if we want

to modify it, and at some point, what we’re going to want to do is to talk about - do

we need all of these pieces in order to have fully defined a function? Which of these

components are critical to the definition, and which are just saying the same thing in

a different way.

The instructor provided teachers with opportunities, both implicit and explicit, in

subsequent classes to revisit the definition and revise it. The list was brought out during

activities in which there was the potential for the definition to be revisited and revised.

Teachers first grappled with the univalence criteria, as seen in this excerpt debating

whether the graph of y = x2 ? 1 is a function from Class 4:

Instructor: So, if you had a horizontal line test, ok, it’s going to hit twice. So why isn’t

that a problem for a function? Kelsey?

Kelsey: I don’t think it’s unique, as so much as it’s exactly one. Like that there can be

just ONE. It doesn’t have to be different from any other one. The thing is, for

every input, there can be ONLY one output

Instructor: Ok, so for every input, there can only be one output. So where does

uniqueness come into play though? Bruce?

Bruce: I think when you’re talking about a function, you’re more concerned about

the dependency between variables… So I think that’s how I keep it in my

mind, what’s a function and what’s not. If I input a value, I want to know

what’s going to come out. I’m not really concerned about the other way

around, trying to figure out where I started with my output. Because in the

real world, there’s usually a dependency between variables, the independent

and the dependent variables. So you’re worried about, taking a control

variable, and does it actually control the situation. If it does, then, it’s a

function

Instructor: Ok. Bonnie?

Bonnie: In order for it to control the situation, there’s got to be just one output. You

have to be able to determine what that output is

Instructor: So there’s one output, for an input. So when I put in one, I get two

Bruce: Right

Instructor: When I put in one, I don’t get anything else but two

Kelsey: Right, right

Instructor: Ok, so that’s the uniqueness we’re talking about. Bonnie?
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Bonnie: That’s just what I was going to say. The uniqueness, is to that particular input,

it’s not that it’s unique in all of the functions

[…teachers continue to debate the issue and illustrate with examples…]

Bruce: [referring to the chart paper] I still agree with Christopher, though. I mean, I

would change that unique to just say one. It’s just more clear. I mean, we

could explain it but for someone to look at it, if it said ‘‘one’’, it’d be more

clear

Kelsey: Exactly one

Several: Exactly one

Bruce: Exactly one

Teacher: What’s wrong with unique?

Instructor: Well, part of the reason for doing this list was so that we could modify it as

we worked. I didn’t cross unique out, but I added exactly one. Ok?

The more challenging criterion, arbitrariness, was addressed several ways. The most

salient activity that provided teachers opportunity to learn was discussion of the article, ‘‘A

Function is a Mail Carrier,’’ in which an analogy of a mail carrier (with letters as inputs and

mailboxes as outputs) is used to make sense of function (Sand 1996). This discussion was

noted by over half the teachers as contributing to their learning about the definition of

function. In an activity that followed in which teachers were asked to create real-world

examples of functions, their work showed explicit consideration of arbitrariness. The task

asked teachers to create multiple representations of each relationship (table, graph,

equation) as appropriate and explain why each was a function. In the following excerpt

from Class 7, prospective secondary teacher Bert shares his example:

Bert: I just used students’ test scores as an example. I said that when students take

tests, that they each have a test score. And they can score the same on a test,

but for each student they’re not gonna come out with two different scores. So,

I came up with this scatter plot of students and their score. So student A had

one score, B had a different one, C had a different one, and then I made D

have the same as B. So then I drew the mapping of the student and their score

so that B and D, although they have the same score, you can see that for each

student, they had exactly one score. No student had two different scores. You

can only come up with one score. So, the score was a function of the student.

The score corresponds to each student. What score you have corresponds to

what the student got on the test. I couldn’t really come up with an equation

for it, so I didn’t

Instructor: Is that legitimate, not having an equation?

Several: Mhm

Instructor: Yeah, it would be. Not everything has to be defined by an equation

Looking across these data, we see teachers that had difficulty initially providing a

complete and accurate definition of function on the pre-course assessment. The ideas

shared in the first discussion, as captured in Fig. 3, suggest that the teachers as a group

were able to identify key features of function in definition-like statements. This is not

terribly surprising despite the poor results on the pre-test, as most teachers in the class

would have had exposure to the definition of function as learners, and some would have

taught the concept to their own students. Echoing previous research, arbitrariness was not

explicitly considered in teachers’ first definitions. The discussion of non-numeric functions
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in the course led both to teachers making use of arbitrariness in creating new examples as

seen in Class 7, and attention to the criterion in their post-course assessment written

definitions. This demonstrates that through their work in the course, teachers strengthened

their conception of function as a construct and the key criteria that need to be present in a

definition of function.

Common content knowledge: examples of functions

The ability to classify mathematical situations as functions or non-functions is the second

aspect of CCK measured on the written assessments. Item 4 asked teachers to create an

example and a non-example of a function. Item 2 presented three context-based situations

and asked teachers to classify the relationships as functions or non-functions. Teachers

exhibited strong CCK on both items, even on the pre-test. Table 5 shows the results of

teacher-produced examples and non-examples. The data indicate a ceiling effect for the

example, with nearly all of the teachers providing a correct example of a function on the

pre-test, with all but two correct examples either linear or quadratic functions. There was a

significant increase in correct non-examples of function (Fisher’s exact test, p \ 0.01).

Data from the three contextual situations also showed a ceiling effect, with the only

significant change being an improvement in identifying the rational function in example b

as a function (t(20) = 1.72, p = 0.01).

Given the background of these teachers, it is no surprise that the majority could easily

produce and identify examples of functions. The examples provided by teachers were

relatively straightforward relationships central to secondary mathematics. However, it is

interesting to note that prior to the course, the majority of teachers were able to provide

correct examples of functions, but not all teachers were able to correctly produce a defi-

nition of function.

Content analysis of talk

During the course, teachers considered a wide range of mathematical situations and

classified them as examples and non-examples of function in two ways. The first way was

identifying a situation as a function or non-function—a common and expected type of

discourse. The second way was more unique—using examples of functional relationships

to reconsider and revise the definition of function. These conversations occurred both

spontaneously, when teachers used the term function and/or the definition while exploring

examples, and intentionally, when the instructor specifically asked teachers to relate an

example to the definition. Bringing the definition to bear on examples was a challenge for

Table 5 Teachers’ examples and non-examples of function

Example Non-example

Pre-test (number
of teachers)

Post-test (number
of teachers)

Pre-test (number
of teachers)

Post-test (number
of teachers)

Correct 19 20 13* 19*

Vague/inconclusive 2 0 2 0

Incorrect 0 0 6 0

Did not respond 0 1 0 2

* p \ 0.01
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teachers, not necessarily because they could not do so but because they were reluctant to tie

their examples to specific features of the definition. Teachers initially preferred to simply

state that the example met the criteria upon which they had decided. This was evident in

this excerpt from Class 4, in which teachers were comparing linear (square pattern) and

quadratic (s-pattern) visual pattern tasks that they had solved:

Instructor: So repeat what you said now, Owen

Owen: I was just explaining, there’s a domain, because it’s a function

Instructor: So, that’s something that hasn’t been said, they’re functions. Are they?

Owen: Mhm

Several: Yeah

Instructor: Yeah? How do you know?

Bert: ‘Cause they’d meet the criteria on the list

Several: Criteria on the list

Instructor: They meet the criteria on our list. I just happen to have the list right here. I

basically took what we did, on a piece of paper, and-

Several: [laughing] Oh, it’s OK. It’s OK. We know what it says

Instructor: [laughing] You know what it says. You’ve committed it to memory. I just

simply reproduced it on a larger sheet. Ok, [points to first bullet] specifies

relationship between two sets, a domain and range. Do they both do that?

Several: Mhm

Instructor: Ok, so what is the relationship here?

Bert: Multiply your domain by 4, and add 4

Instructor: Multiply by 4, and add 4. So the domain is?

As the discussion continued, the instructor pressed teachers to connect features of the

mathematical relationship to particular aspects of their definition, such as domain.

Teachers took this practice up in subsequent discussions, spontaneously offering such

details when examining other examples in the course.

In other discussions, teachers used examples to highlight particular aspects of what it

might mean to be a function. This excerpt illustrates a moment in which the class definition

of function was called into question when considering a new example. Teachers were

creating a graph of situation in which a girl’s hair grows 1 inch each month, and she gets

her hair cut by 1 inch every second month. A debate about representing the haircut

erupted—do we use an open and a closed circle, two open circles, two closed circles, a

slanted line, or something completely different:

Instructor: Ok, so I want to talk about that, wouldn’t be a function. So let’s take all those

circles and fill them in, ok? Part of the reason for bringing this

PARTICULAR problem up is to really call into question, what does it

really mean to be a function, and if those were filled in, why wouldn’t it be.

You said the vertical line test, but this is actually an opportunity to try to

contextualize what that means, yet again, in an example that’s slightly

different than ones we’ve looked at before

Bonnie: You would have two different lengths of hair and every second month…
there would be two different lengths of hair in that one month. So for that

input there’d be two outputs rather than only one

Bert: I don’t want to start a big debate over this, but when you think about it

realistically, you could close them both in but they wouldn’t be above each
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other. They’d have to be spread out…. it wouldn’t be at the same time

interval. So technically, you could have them both closed

Instructor: Well, time is continuous… so the point here isn’t really to try to argue which

it should be. It’s really just an opportunity to do what Elaine was saying, in

trying to think about how you’d have to define what it is you’re looking at,

what the domain and range of the variables are. And also to start thinking

about what it means to not be a function. I’m not arguing that this isn’t

This excerpt summarizes how examples compelled teachers to revisit aspects of the

definition. There was a strong sense that this relationship should be a function, leading

teachers to consider how to either select a representation that would satisfy the defi-

nition or modify the definition such that the relationship could be classified as a

function.

While classifying examples with respect to a definition is commonplace, using exam-

ples to reconsider a definition is a rare mathematical practice. Vinner (1991) notes that

most textbooks in secondary and collegiate mathematics position definitions as the means

by which one acquires a concept and then uses that definition to solve problems and

classify examples. Teachers’ adoption of this rare practice was likely to have been a novel

opportunity to consider how definitions and examples can interact. These data show that

teachers improved in their abilities to classify examples as functions or non-functions and

also used the consideration of examples to revisit and refine their definition. This inter-

action is indicative of opportunities to link two aspects of CCK, defining function and

considering examples. This interaction sets the stage for considering the role that various

representations of function examples can play in supporting student learning.

Specialized content knowledge: connecting representations of function

As suggested in the excerpts involving examples of functions, the representation a

mathematical relationship takes can profoundly influence how one understands the

underlying relationship. As such, the course presented mathematical tasks that used a range

of starting representations (equation, table, graph, context), with the instructor systemati-

cally pressing teachers to produce and connect different representations of function situ-

ations. Varying the starting representations afforded teachers the opportunity to move

between multiple representations. Table 6 shows the starting representations used in the

course tasks.

Representations were a significant source of learning for teachers in the course, as

reported in the post-course interview. Twenty of twenty-one teachers offered that they

learned about representations, connections between representations, and the importance of

using and linking multiple representations in their teaching. Many teachers noted that their

representational fluency was limited before the course and made explicit connections

between the importance of multiple representations and teaching practice. The following

excerpts are representative of the ways teachers described their learning:

Bert: I think now I understand connections, not just the equations not just the graphs

and the tables but to the initial diagram. You’re seeing where the actual numbers

come into play with the visual representation. You can see that your slope is

going to be your change in the table or your rise over run on the graph, and your

y-intercept is going to be on the graph. The y-intercept will be your starting point

on the table whenever x is zero
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Diane: [One idea I learned] was multiple representations, being able to see [slope in] the

different representations. You can see it in a graph, or you can see it in a table….

I usually would think of [functions] algebraically, but I never thought of trying to

look at all representations for the same function, and see the similarities and the

differences

Items 1 and 3 on the written assessment measured changes in teachers’ representational

fluency. Teachers’ scores on a rubric (see Table 3) measuring use of and connections

between representations show significant improvement. These items asked teachers to

create a generalization for two visual patterns and to link aspects of their generalization to

the visual. On both items, teachers showed a significant increase in their capacity to

connect their generalization to the visual pattern (Wilcoxon sign-rank test; Q1: W = -73,

ns/r = 12, p = 0.0045; Q3: W = -91, ns/r = 13, p = 0.0016).

Content analysis of talk

Talk about representations of functions was pervasive throughout the course. Early in the

course, a version of the representation diagram adapted from Lesh et al. (1987) was

introduced as a reference. The diagram as it was presented is shown in Fig. 4a. During

subsequent work on mathematical tasks, teachers were pressed to create and share a variety

of representations and to connect the key mathematical features of the situation to those

representations. As teachers encountered tasks with different starting representations,

teachers began to appreciate ways in which specific representations revealed particular

aspects of the relationship. For example, teachers often used a table to make arguments

about rates of change and linked their symbolic and graphical representations to the context

of the task. Additionally, the use of specific mathematical language such as slope and

y-intercept as a means to explain function behavior substantially increased.

To characterize teachers’ opportunities to learn about creating and connecting repre-

sentations, we conducted a fine-grained analysis of a conversation in Class 7. The Cal’s

Dinner Card Deals task in Class 7 featured a graph as a starting representation, and while

the task afforded opportunities to generate other representations, it did not call specifically

for other representations. As such, it provided an opportunity to measure the extent to

which teachers spontaneously made use of function representations. This discussion was

identified by fifteen of the twenty-one teachers identified as influencing their learning. The

task presented teachers with a graph representing three meal pricing plans and asked them

to determine which of plans was best, recording results on a poster. The class then engaged

in a gallery walk in which they publicly wrote observations and posed questions about each

Fig. 4 Five representations of function and the connections made in Class 7
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group’s solution to the task. The discussion of these solutions, observations, and questions

sparked a 30-minute discussion about the task and the underlying functions. This discus-

sion included 336 talk turns and contained speaking turns by the instructor and sixteen of

the eighteen teachers present that day.

In our analysis, we coded talk turns for each of the five representations shown in

Fig. 4a. For each coded turn, we identified whether a connection was made to another

representation. Using arrowheads to indicate connections that were made, Fig. 4b shows

the extent to which teachers generated and connected representations in this discussion.

(For example, the single-headed arrow between Table and Context indicates that teachers

discussed a table and connected mathematical features of the table to the context of the

problem situation.) In all, teachers generated four function representations in addition to

the initial graph that was presented in the task, and their talk made connections in fourteen

of the twenty possible directions in the service of explaining their solutions to the task. In

the text that follows, we provide a brief narrative account of the conversation, with

excerpts, to illustrate the ways in which teachers made substantive connections between

function representations.

The conversation began with observations about similarities and differences between

the solution paths. For example, Christopher observed that ‘‘none of the [meal values] were

continuous… they don’t consider half or anything’’ (context to language), and Marty noted

that ‘‘Kerry and Diane’s graph actually showed the rate of change and y-intercept, so it’s

easy to look back at their equation and see where both were coming from’’ (graph to

language, graph to equation). This led to a deeper look into the meaning of slope and

intersection in the context of the task, in which Melanie connected language and context:

‘‘for every meal you purchase, it’s six additional dollars,’’ as did Kerry in describing

intersection: ‘‘That means that for each of those plans, you’re getting the same amount of

meals for the same price.’’ This conversation blossomed into a discussion of different

procedures for solving simultaneous equations, still making use of multiple representations

(graph to equation, graph to context, table to context, table to equation, and table to

language in the subsequent 25 turns). The conversation culminated in the teachers

extending the equations and graphs to find the cost per meal, touching on concepts of

limits.

Teachers’ written work on the pattern task demonstrated significant changes in their

abilities to generate and connect representations. The conversation analyzed in Class 7

represented an opportunity to select and make use of a variety of mathematical repre-

sentations. The analysis of this conversation and the excerpts above show teachers spon-

taneously generating and made substantial mathematical use of all five function

representations. This stands in contrast to normative practices in mathematics class, where

tasks explicitly ask for specific representations in specific orders, with an emphasis on the

symbolic as a starting representation and graphs as a destination. As such, teachers’ per-

formance on the pattern tasks as well as the connections made in the Class 7 discussion not

only shows significant change, but also represents an opportunity to learn that was likely

different from their previous mathematical experiences.

Specialized content knowledge: considering the role of definition

Just as teachers need a range of examples and representations of functions to promote rich

understandings in their students, they also need to be able to make informed decisions

about the definition of function. Aside from knowing the core components the definition,

teachers need to be able to compare and select appropriate definitions for classroom use
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and consider the role of definition in the classroom. Considering the role of definition

includes reflecting on the place that a definition holds in the domain and the understandings

it encapsulates. The importance of this aspect of SCK became salient as teachers engaged

in the work of the course, linking the work done on developing, revising, and comparing

definitions of function to work they might do with students in the classroom.

The team had intended to engage teachers in a critical examination of the definition of

function; however, discussions about the role of definition in mathematics more generally

were not anticipated in our initial development of the course. The role of definition

emerged as a topic as the course evolved and in response, the team designed activities

asking teachers to compare three textbook definitions of function and discuss of ‘‘A

function is a mail carrier’’ (Sand 1996). Because instrument design preceded this decision

about course content, no written or interview items addressed the role of definition.

However, the majority of the talk turns in these two discussions during Class 7 centered on

the role of definition in mathematics and was subsequently revisited at the close of the

course when discussing the final class definition of function during Class 11.

To determine whether teachers had the opportunity to learn with respect to definition,

we conducted a thematic analysis of the eleven focal conversations with respect to the role

of definition. Two themes emerged in the talk: considering the mathematical role of

definition and considering the pedagogical role of definition. Considering the mathematical

role of definition encompassed several key aspects of mathematical definitions: the use of

previously defined terms and the notions that definitions are dynamic, open to modifica-

tion, and arbitrary—that is, the affordances of the mathematical idea being defined are

dependent on how the idea is defined.6 For example, Elaine’s comment during a discussion

of the ‘‘Hair Growth’’ graph makes salient the idea that definitions are arbitrary:

But, doesn’t this also just kind of show, that sometimes, depending on how you

define certain things, that’s going to depend how you even graph or define a func-

tion… Not everything is cut and dried.

Teachers also talked about the pedagogical role of definition. This talk focused on

teachers’ evaluations of different definitions of function and whether those differing forms

would be useful in the work in their classrooms, with their students. For example, in the

following excerpt, teachers discuss the language of functions with respect to their students:

Terry: So I never talk about output, for instance, for number two [referring to

Fig. 3]. I always tell them that the input controls the output, and then it avoids

the passive tense, and I don’t know, I think it’s somehow more precise, for

some reason

Instructor: So, the input controls the output?

Terry: That’s how I do it with my students

Instructor: OK. So the message we’re trying to send is that there is this dependency.

What you get out depends on what you put in, and you’re talking about it in

terms of control

…

6 Consider, for example, the two popular definitions for a trapezoid. One definition defines trapezoid as
having at least one set of parallel sides, affording the use of any result proven for a trapezoid to be applied to
parallelograms. Another definition defines trapezoid as having exactly one set of parallel sides, making it a
distinct construct from parallelogram. Neither definition is inherently better, but they afford different
mathematical opportunities.
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Bonnie Just one small comment, to Terry, is I think the reason just basically because of

what she said, because in math we say independent variable and dependent

variable, saying the output depends on the input probably makes the relationship

clearer

This excerpt illustrates the similarities and differences between definition in the

mathematical and pedagogical domains. Terry argued for an alternative wording for the

definition to use with her students, acknowledging that multiple mathematically equivalent

definitions for function exist. Moreover, Terry is concerned about clarity, but with respect

to a particular population: her students. Definitions must be clear with respect to the

mathematical ideas being used and built upon; however, issues such as passive tense and

precision of language are not necessarily a consideration when building a definition in the

mathematical community. Yet, these issues are paramount in working with a group of

students; if the language used in a definition is incomprehensible to students, learning the

concept is unlikely. A definition needs to be accessible to students, yet mathematically

accurate so that they will not learn something later that renders the definition false, such as

the notion that multiplication makes a number larger (Ball and Bass 2000). While defi-

nitions might be mathematically equivalent, they are not always pedagogically equivalent;

this notion exemplifies teacher learning in the course related to the role of definition.

Policies, standards, and guidance about language use in mathematics education often

focus on the use of vocabulary and technical and correct language (Morgan 2005). Dis-

cussions of the ways in which different language in definitions might afford different

mathematical understandings and implicate different pedagogical uses are outside the norm

for many mathematics teachers. The analyses of these discussions suggest that teachers had

and made use of the opportunity to consider the ways in which the construction and

language of a definition can influence their own and their students’ mathematical under-

standings. While we did not initially identify this as an important topic in the planning of

the teaching experiment, providing teachers the opportunity to consider the role of defi-

nition represented a significant opportunity to learn specialized content knowledge.

Moreover, it provided an opportunity to consider the role of definition beyond just func-

tions, laying the groundwork for transfer to other mathematics content areas.

Discussion

The purpose of this study was to describe changes in teachers’ common and specialized

content knowledge of function following a content-focused methods course. In analyzing

learning through written work and talk, we contend that the course provided significant

opportunities to develop common and specialized content knowledge related to function.

As such, we consider this teaching experiment to have been successful. We now reflect on

teachers’ learning more generally and identify course design features that may generalize

to other contexts.

A critical idea that emerges from this analysis is that even for secondary teachers who

have disciplinary majors, there is a need for carefully designed experiences that develop

their CCK and SCK. Given the position of function in the secondary curriculum both

domestically and internationally, it might be reasonable to presume that every high school

student should have the ability to define function and identify examples and non-examples

of functions prior to collegiate work (CCSS 2010; Cooney et al. 2011; NCTM 2000). As

such, one would expect teachers to exhibit some knowledge of function, particularly
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related to being able to define function and provide some core examples (such as linear and

quadratic functions). Yet teacher knowledge regarding function and the opportunities

teachers report to develop and deepen their knowledge are quite variable (Tatto et al.

2012). Data from the start of the course confirm previous findings—that while teachers are

usually able to identify or provide examples of functions, they are less likely to give an

accurate definition (e.g., Even 1990; Pitts 2003; Stein et al. 1990). While most teachers

were able to classify linear relationships as functions, they were less successful in deter-

mining whether more complex relationships were functions. Data from the end of the

course indicate significant growth in teachers’ abilities to provide a definition and a

stronger ability to identify more exotic examples and to create non-examples of functions.

When asked to reflect on their learning from the course, eleven teachers—more than half of

the class—remarked that they learned about the definition of function.

Similarly, one might expect teachers entering the course to be able to generate multiple

representations of functions. Making connections between these representations and being

able to interpret a function using multiple representations is an important competency for

supporting student learning about function. Our data show that teachers entering the course

could generate representations but were limited in their ability to connect them. By the end

of the course, the ability to fluently connect representations and to mobilize them in the

service of making sense of a function situation was significantly stronger. In particular, the

leveraging of visual patterns, as demonstrated on the two written assessment items focused

on pattern tasks, and the use of language and context, as seen in the Class 7 discussion

represented in Fig. 4b, represent departures from the usual heavy dependence on numeric

and symbolic representations in secondary classrooms (Janvier 1987; Leinhardt et al. 1990;

Leinhardt and Steele 2005). The work of connecting a generalization back to a visual

pattern or context is not trivial, and it serves an important role in making mathematical

sense of the underlying function. When a generalization is left without connection to the

original context, the complexities of the pattern’s composition and the connection between

the symbolic and visual or contextual representations are often lost, along with the thought

process involved in creating the generalization. The connection back can add explanatory

power to the underlying mathematical ideas, such as slope as rate of change and

y-intercept. By developing representational flexibility, teachers solidified an important

component of SCK that can support their own students’ thinking about functions.

These data suggest that the course was worthwhile—while we might expect teachers to

have strong CCK related to function, many did not at the start of the course. Moreover, it

was successful, in that teachers showed evidence of learning related to function. In par-

ticular, teachers showed changes in their SCK, an aspect of mathematical knowledge for

teaching that is linked to student achievement and for which there are few systematic

opportunities for teachers to develop. While the tasks used with teachers in the course are

not necessarily new to the work of teacher education, the ways in which the tasks were

assembled and the focus on a single mathematical topic are novel features of the content-

focused methods course. We close our analysis by addressing two key questions that help

to generalize the work of the teaching experiment: what features of the course more

generally supported teacher learning, and what aspects of that learning generalize beyond

the study of function?

The content-focused methods course: features that support teacher learning

The content-focused methods course was designed as a means for enhancing teachers’

common and specialized content knowledge, addressing a well-documented need in
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teacher professional education. As evidenced by the work and talk of teachers, the course

served this purpose. However, the course was not just an experience in learning content; it

was designed to support teachers both as mathematics learners and teachers. We designed

the course with three key assumptions in mind: that solving tasks would provide oppor-

tunities to develop CCK, discussing solutions would provide opportunities to develop

SCK, and considering the tasks as learners and teachers would connect CCK and SCK. We

now reflect on what teachers learned in the course and use that reflection to identify three

features that supported that learning and that can be applied to the design of other teacher

education experiences.

Focusing on a key aspect of mathematics content from the curriculum

The content-focused methods course described in this article focused on a single slice of

mathematics content—the notion of function. Function is a topic complex enough to

sustain weeks, even months of teacher education and has been shown to pose challenges

both for students and teachers. It is a mathematical concept that cuts across grade levels

and is identified in standards documents as central to the secondary curriculum. As such, an

aspect of mathematics content such as function provides ample opportunity for diverse sets

of teachers to engage and do meaningful work that is likely to support their classroom

practice in multiple ways. In our course, teachers learned about function in a variety of

ways, from refining their own personal definition to expanding their repertoire with respect

to examples to considering the ways in which their students might struggle with function

concepts. By focusing on function, teachers had opportunities to explore function in a

much greater depth than a small collection of function activities within a more mathe-

matically diverse course might afford. This focus also supports work in the classroom; by

focusing on one topic, teachers experience the sequencing of tasks and topics in ways that

build a conceptual understanding, much in the way that they might design a curricular

sequence in their own classroom.

The range in activities also supported learning across the diverse set of teachers enrolled

in the course. All teachers entered the course with some experiences with function, yet not

the same knowledge and experience. Tasks were selected and facilitated in ways that

afforded teachers opportunities to elaborate their knowledge in meaningful ways, no matter

their initial understanding of function. Teachers were able to move from flawed definitions

of the function concept to correct ones, to add additional ways of defining function to their

arsenal, and to consider examples of functions and non-functions that were new to them.

With respect to SCK, this diversity also illuminated similarities across diverse populations

and contexts, such as when teachers from urban and suburban districts, across middle and

high school classrooms, could note similar patterns with their students in the learning of

function.

Using a guiding inquiry to frame and motivate the work

During the course, teachers were regularly asked to revisit and refine the definition of

function. The sustained and specific inquiry into function was important for a number of

reasons. All course activities had links to the concept of function; as such, there always

existed a common mathematical thread to which teachers could relate a particular activity.

The revisiting of this inquiry pressed teachers to generalize from the specific examples that

they had experienced and to consider how the examples may have changed their con-

ception of function. Moreover, the repeated consideration of the definition provided
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opportunities for the course team to expose and understand teachers’ initial misconceptions

or naive conceptions about function. In turn, the course activities provided teachers with

opportunities to refine and elaborate those initial understandings.

Attending to content, pedagogy, and the ways in which pedagogy can support learning

content

Approaching mathematical tasks first as learners, sharing solutions, and then analyzing the

tasks as teachers were consistently cited by teachers as an important feature of the course. This

sequence provided teachers with opportunities to connect CCK and SCK around a particular

aspect of function. In order to meaningfully consider the range of examples, representations,

and misconceptions related to a particular mathematical idea, one must first understand the

mathematical idea itself. Engaging with mathematical tasks as learners first afforded teachers

the opportunity to revisit and revise their common content knowledge en route to exploring

the task as a teacher—specialized content knowledge. By engaging as a learner first and then

as a teacher around the same task, teachers are more likely to notice finer-grained nuances

related to teaching and learning around the mathematical idea, helping them to link their

common and specialized content knowledge (Steele 2008). This focus on the content as a

learner first afforded teachers a new perspective when considering the content as teachers and

in analyzing practice (others’ and their own) around teaching the content of function.

The use of practice-based artifacts situated the work in both the content and pedagogy

realms simultaneously and was an important feature for linking the two. For example, con-

sider the activity on comparing three definitions of function from textbooks in Class 7, which

was cited by 33 % of the class as contributing to their learning. The primary goal of this

activity was to consider how the key characteristics of univalence and arbitrariness could be

represented in different function definitions. This goal could have easily been accomplished

without drawing from definitions from mathematics textbooks or even without explicitly

noting the source of the definitions. Yet in doing so, teachers considered not only how the key

characteristics of function were evident in the definitions, but also what the implications of

using the different definitions might be for work with their students. In this way, the practice-

based nature of the activity connected previous work developing CCK to issues of SCK useful

in the work of teaching, intimately connecting content and pedagogy.

We argue that these three features of the content-focused methods course teaching

experiment were instrumental in providing teachers opportunities to develop their common

and specialized content knowledge related to function. We do not argue that these are a

complete set of design features nor are they necessarily requisite for content learning in a

methods course; rather, we put them forth as a starting point for teacher educators inter-

ested in supporting teacher learning of CCK and SCK. Finally, it is important to note that

the investigation reported here focused on teachers’ content knowledge. As a methods

course, the research team held a number of pedagogical goals for the course, and teachers

reported learning related to pedagogy as well as content. A detailed report of this learning

is beyond the scope of this article.

Generalizing from the particular: potential influences beyond knowledge of function

The primary mathematical goals of the course were to enhance teachers’ CCK and SCK

related to function; the results presented show that these goals were achieved. The research

team had intended for the course to influence teachers in two broader ways: shifting

teachers’ perceptions of themselves as learners of mathematics beyond the study of
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function and influencing their teaching practice. We offer a few brief reflections on the

ways in which the teaching experiment might have generalized beyond the particulars of

learning about functions.

Mathematically, the sustained inquiry in which teachers constructed, revisited, and

revised their own understandings models the work of mathematicians in the field. This

stands in sharp contrast to the typical practices of texts and teachers, as described by

Vinner (1991), in which concepts are embodied by definitions, which are positioned as

unilateral authorities by which examples are measured and from which all reasoning about

a concept takes place. The positioning of function and its definition in the course as an

object of inquiry portrays mathematics instead as an evolving, co-constructive, dynamic

body of knowledge that represents a human endeavor. Pedagogically, the sustained inquiry

into a mathematical idea might serve as a model for the teachers to engage in their own

students. A common criticism of mathematics teaching in the United States by students,

teachers, and researchers is that instruction often represents mathematical knowledge as

discrete blocks of procedures and tasks that are not related one to the next. The positioning

of function in the content-focused methods course, and specifically the use of definition as

the lens and touchstone, provides an alternative in which the mathematical explorations

serve to build a conceptual understanding of a mathematical idea over time, as imagined by

Bruce in his post-course interview:

I never thought… to go from the problem to the table, or from the graph to an

equation… I don’t think I’ve ever done a problem where it started that way. And I

thought that [there were] some points to be learned in this discussion that happened

in the second to last class about slope, and how kids tend to memorize the m part

and… can’t put any meaning to it because they just learned it, slope is what comes

before x. And really, if it gets most easily seen on a graph, like it’s the change in

y over the change of x, but if you don’t really get there, if you graph second, the kids

will grab onto that definition of it’s just m and never really get the idea. I think kids

in mathematics tend to latch onto the first thing that they’re taught and then kind of

tune out everything else. So personally, next year when I teach this stuff, I’m going

to start with a graph and try and introduce slope that way. Then come back and say

‘‘Hey, what do you know- it’s also the m in front of this x here.’’

The question of whether these practices will be realized in the classrooms of teachers

who participated is still an open one that would require further study, a limitation of the

work. However, we argue that by building and linking common and specialized content

knowledge related to function, teachers have taken a requisite first step in being able to

engage their own students in deep and meaningful study of functions. Moreover, the

teachers in the course engaged in practices that served as a model for a conceptual, learner-

centered inquiry into a complex mathematical topic. Teachers moved between individual,

small-group and whole-class discussions in which key aspects of function were considered,

were pressed to discuss and represent the collective knowledge of the group in a variety of

ways, and periodically were asked to reflect on their own learning. They engaged with

function both as a learner and as a teacher, giving them the opportunity to both enhance

their own mathematical knowledge and to consider issues of their own students’ learning.

By grounding these student-centered pedagogical practices in the context of learning

mathematical content related to function, teachers experienced learning at the interface of

theory and practice that is likely to impact not only their own understanding of the

mathematics of function, but also the understandings they foster with in their own

classrooms.

MKT for function 477

123



Acknowledgments This paper is based on work supported by National Science Foundation grant ESI-
0101799 for the ASTEROID (A Study of Teacher Education: Research on Instructional Design) Project.
Any opinions expressed herein are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

Appendix: Pre-/post-written assessment items

Pre-/Post-test Questions 1–4

1. The first train in this pattern consists of one regular pentagon. For each subsequent

train, one additional pentagon is added. The first three trains in the pattern are shown

below.

Train 1                    Train 3 Train2

a. Determine the perimeter for the 4th train.

b. Determine the perimeter for the 100th train.

c. Write a description that could be used to find the perimeter of any train in the

pattern.

Explain how you know.

How does your description relate to the visual representation of the trains?

2. For each of the situations below, specify the relationship between the quantities using

a verbal description, numeric table, symbolic equation, and graph.

a. You are buying a number of apples. The apples cost 30 cents each. Specify the

relationship between the number of apples and the total cost.
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Check off all the terms that apply to this relationship using the list below:

Function Linear Proportional

Non-function Nonlinear Non-proportional

b. A video store charges $25 per month for unlimited rentals. Specify the relation-

ship between the number of videos you rent in a month and the cost per video.

Check off all the terms that apply to this relationship using the list below:

Function Linear Proportional

Non-function Nonlinear Non-proportional

c. A cable company charges $25 a month for service plus a $50 installation fee.

Specify the relationship between the number of months you subscribe and the total

amount paid for installation and monthly service.
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Check off all the terms that apply to this relationship using the list below:

Function Linear Proportional

Non-function Nonlinear Non-proportional

3. The figures below are made of squares. The number of squares increases with each

new figure.

Imagine that the pattern continues to increase in the same way.

a. How many squares are in the 5th figure?

b. How many squares are in the 100th figure?

c. How could you find the number of squares in any figure in this sequence?

d. Explain how you know.

e. How does your method relate to the visual representation shown above?

4. What is a function? Give an example of a function and a non-function.
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